摘要
针对传统安全帽佩戴识别算法检测精度低、鲁棒性差的问题,提出了一种基于深度学习的安全帽佩戴检测方法。该方法以YOLOv3检测算法为基础,对其网络结构和损失函数加以改进。首先,通过增加特征图弥补原YOLOv3算法对小目标检测效果不佳的问题;然后在增加特征图的基础上,使用K-means聚类算法对收集的安全帽数据集进行聚类,选择出合适的先验锚框;最后,采用GIoU Loss作为边界框损失,在损失函数中加入Focal Loss,减少正负样本不均衡带来的误差。实验结果表明,相较于YOLOv3检测算法,改进后的算法在平均精确率上提高了3.47%,在安全帽识别精确率上提高了4.23%,在安全帽识别上具有一定的先进性和有效性。
- 单位