摘要
经典机器学习算法的量子化重构是量子机器学习领域的一个重要研究方向。聚类作为一类在机器学习领域被广泛应用的算法,其量子化重构也拥有较高的研究价值。目前的量子机器学习算法大多存在复现难度大、难以与经典算法形成直观对比等问题。为解决这些问题,提出了一种量子原型聚类算法(Quantum Prototype Clustering, QPC),该算法可以很方便地在现有的通用性量子计算设备上部署。该方法首先结合单量子位旋转特性,寻找信息损失最小的特征映射方式,使用双维度特征数据制造单量子位旋转;然后,基于多量子位纠缠及纠缠系统坍缩的特性,设计了一种用于制造特定量子纠缠系统和测量纠缠系统坍缩结果的量子线路。根据纠缠系统中受控量子位旋转角和纠缠系统坍缩结果的关系,并结合闵可夫斯基距离的定义,推导了一种用于评估输入样本相似性的量子距离。该量子距离测量模块与经典计算机中的距离计算模块具有相同的输入输出形式,可以不加修改地替换掉原型聚类中的闵可夫斯基距离计算,从而将经典的原型聚类算法重构为QPC。在来自kaggle和scikit-learn的多组公开数据集上进行的多次重复实验表明,在平均样本中心距等评价指标上,QPC与经典的原型聚类算法无明显差别。
- 单位