摘要

多园区综合能源系统可通过多能互补互济显著提升运行经济性,然而园区之间的复杂互动、多能耦合决策会给多园区综合能源系统的能量管理带来决策空间庞大、算法难以收敛等挑战性问题。为解决上述问题,提出了一种基于改进深度Q网络(modified deep Q network, MDQN)算法的多园区综合能源系统能量管理方法。首先,采用独立于园区的外部气象数据、历史互动功率数据,构建了基于长短期记忆(long short-term memory, LSTM)深度网络的各园区综合能源系统外部互动环境等值模型,降低了强化学习奖励函数的计算复杂度;其次,提出一种基于k优先采样策略的MDQN算法,用k-优先采样策略来代替ε贪心策略,克服了大规模动作空间中探索效率低下的问题;最后,在含3个园区综合能源系统的算例中进行验证,结果表明MDQN算法相比原DQN算法具有更好的收敛性与稳定性,同时可以提升园区经济效益达29.16%。