基于无人机高光谱遥感和3D-ResNet的荒漠草原地物分类

作者:张燕斌; 杜健民*; 王圆; 皮伟强; 高新超
来源:中国农机化学报, 2022, 43(04): 66-73.
DOI:10.13733/j.jcam.issn.2095-5553.2022.04.011

摘要

荒漠草原生态信息调查与统计的瓶颈是效率与精度,传统的人工地面调查效率低,航天航空遥感调查受空间分辨率限制,精度难以满足要求。建立的无人机高光谱遥感系统兼具高光谱分辨率、高空间分辨率和高效性等优势,为基于遥感的高精度荒漠草原生态信息调查与统计提供硬件基础。利用深度学习经典网络模型VGG16与ResNet18和改进为3D卷积核的不同卷积核数量的3D-ResNet18-A、3D-ResNet18-B和3D-ResNet18-C模型对采集到的荒漠草原高光谱数据进行地物分类。结果表明,两种经典模型对荒漠草原中植被、裸土展现出较好的分类效果,而改进为3D卷积核的3D-ResNet模型具备更佳的分类效果,同时对小样本地物具备更强分类性能,其中3D-ResNet18-B的分类性能最好,对植被、土壤、阴影和其他四种地物的总体分类精度达到97.73%。无人机高光谱遥感系统和3D-ResNet模型的深度融合为地物精细分类与统计奠定基础。

全文