摘要

土壤有机质是农田肥力评估的重要指标,要实现快速获取大面积土壤有机质的含量需要建立高效、稳健的预测模型。光谱技术能够快速诊断土壤有机质,以水稻土为例,从校正样本选择方法的对比,研究了可见-近红外、中红外和可见-近红外-中红外三种不同波段光谱对土壤有机质的预测能力。可见-近红外和中红外区域的光谱反射率转换成吸收率后通过Savitzky-Golay平滑法去噪,通过三种校正样本选择方法建立相应的偏最小二乘回归预测模型。通过Rank-KS法建立的三种波段的有机质预测模型均优于Rank法和KS法,中红外波段光谱的模型预测能力强于可见-近红外和可见-近红外-中红外波段的预测模型,基于RankKS法建立的中红外波段有机质预测模型取得了最好的预测效果,RMSEP仅为3.25g·kg-1,RPD达到4.24,依据VIP得分筛选出可见-近红外和中红外波段的水稻土有机质重要建模波段。因此,中红外光谱建模技术能够对水稻土有机质进行快速定量分析,Rank-KS法可提高模型的预测能力,为今后农田肥力评价和科学施肥提供技术支持。