摘要

为解决大型禽业企业物流订单位置跨度大、配送车辆调度工作人工参与度高、雏鸡配送成本高的问题,本研究结合车辆路径优化问题求解思路,提出了基于订单位置聚类的雏鸡配送车辆调度优化模型。模型通过引入K-means聚类算法,实现了基于订单位置的配送单元划分方法,并基于肘部法则与轮廓系数法设计了自动化订单位置聚类流程,实现了订单配送单元的自主式划分。在划分的各组订单基础上,以配送成本最优作为目标函数,建立雏鸡配送车辆调度优化模型,并结合改进的遗传算法进行求解。研究采用北京某禽业企业实际订单数据,对订单未聚类情况下的整体调度优化与聚类分组情况下的调度优化两种情况的结果进行了对比分析,结果表明订单聚类分组情况下,优化模型使配送车辆平均每天总里程比订单未聚类情况降低69.84%,可以得出,加入聚类算法的订单分组优化更适合实际订单位置跨度大、订单数量多的车辆调度场景。基于以上研究,研发设计了适用于雏鸡配送的车辆调度优化服务系统,实现了订单自动化聚类、配送车辆调度优化、定制化模型服务等功能,通过模型的实际应用,达到了为禽业企业提供智能化配送车辆调度优化服务的目的,切实提高了企业运行效率,降低了企业配送成本。

  • 单位
    国家农业信息化工程技术研究中心