摘要

针对光伏发电系统在不同天气状况下发电功率预测精度不高的问题,在分析传统方法的基础上,提出一种无迹卡尔曼滤波神经网络光伏发电预测方法。该方法利用无迹卡尔曼滤波实时更新神经网络模型的权重,以直流电压和电流作为系统的输入,以有功功率和无功功率作为系统的输出,分别建立两个独立的双输入单输出功率预测模型。实验结果表明:所提出的方法对有功功率和无功功率的预测精度分别为97.3%和94.2%,并且对天气具有良好的鲁棒性。

  • 单位
    国网青海省电力公司电力科学研究院; 重庆大学; 输配电装备及系统安全与新技术国家重点实验室