摘要
在联邦学习中,由于用户的本地数据分布会随着用户所在地以及用户偏好而变动,数据的非独立同分布下的用户数据可能缺少某些标签类别的数据,在模型聚合中显著影响了迭代更新速率和最终的模型性能。为了解决这一问题,提出了一种基于条件生成对抗网络进行联邦数据增强的算法,能够在不涉及泄露用户隐私的前提下,通过生成对抗网络模型对数据偏斜的参与者扩增少量数据,大幅提升非独立同分布数据划分下联邦学习算法的性能。实验结果表明,与当前主流的联邦算法相比,该算法在非独立同分布设置下的MNIST,CIFAR-10数据集上的预测精度分别提升了1.18%和14.6%,显示出了该算法对非独立同分布问题的有效性和实用性。
- 单位