摘要
为实现陕西关中地区夏玉米叶片含水率遥感估算,本研究通过夏玉米叶片高光谱反射率和含水率的测定,利用原始光谱及转换光谱,构建任意两波段的光谱指数,分析光谱指数与叶片含水率之间的关系,构建玉米叶片含水率估算的单因素回归模型和基于支持向量回归算法(SVR)、反向传播神经网络回归算法(BPNN)和麻雀搜索随机森林回归算法(SSA-RFR)的多因素模型,并根据模型精度筛选玉米叶片含水率估算的优化模型。结果表明,随叶片含水率的增加,短波红外波段的光谱反射率降低,最优光谱指数的构成波段主要位于短波红外波段,其中基于一阶导数光谱的比值光谱指数(R1 563/R1 406)和归一化光谱指数[(R1 563-R1 406)/(R1 563+R1 406)]与叶片含水率相关性最佳,其相关系数绝对值均达0.83;多因素回归模型的模拟效果优于单因素回归模型,基于麻雀搜索随机森林回归模型的精度最高,验证集决定系数(R2)为0.78,均方根误差(RMSE)和相对误差(RE)分别为1.14%和1.09%。本研究通过分析玉米叶片含水率与高光谱反射率之间的关系,建立遥感估算模型,为关中地区夏玉米生产水分管理提供依据。
- 单位