摘要
为了进一步提高干扰环境下反舰导弹的目标识别精度和泛化能力,将集成学习中的元学习策略引入反舰导弹的目标识别领域,并提出了一种基于叠加归纳策略的元学习目标识别算法。该算法首先通过构建元层学习器对多个基层学习器的学习结果进行"再学习",以纠正基学习器的错误分类、巩固基学习器的正确分类,进一步提高集成分类精度;然后,以决策树为基学习算法构建了同质多分类器系统,在自建的全极化一维距离像HRRP特征数据库上研究了基分类器的数量以及元特征样式、元学习算法的选取对元学习系统分类精度的影响;最后,通过与单一分类器和常用集成算法的对比,验证了基于元学习的反舰导弹目标识别算法的可行性和有效性。
-
单位中国人民解放军海军工程大学; 电子工程学院