摘要
自动调制识别在无线通信领域发挥了巨大作用。多数研究中假设的加性高斯白噪声信道已不再满足实际信道环境的准确描述。实际中,由于闪电、雷暴、多用户干扰、设备故障等原因,信道环境中广泛存在Alpha稳定分布噪声。因此对其开展研究更符合实际且具有挑战性。该文针对Alpha稳定分布噪声提出了一种预处理联合轻量级网络的调制识别方法。首先,通过对数域映射及阈值限制对接收信号进行预处理,抑制由Alpha稳定分布噪声带来的尖锐脉冲将信号幅度控制到合理范围;然后,提出一种基于Ghost模块的轻量级网络来完成信号的调制识别分类任务。实验结果表明,与现有的CLDNN(Convolutional Long Short-term Deep Neural Network)、CNN(Convolutional Neural Network)、ResNet(Residual Network)相比,本文所提方法具有较高的识别准确率及较低的计算复杂度。
-
单位南京邮电大学; 通信与信息工程学院