摘要

求解库岸边坡岩土体的渗透系数是研究滑坡渗流场及多场演化的基础,一般通过原位试验和室内试验求得,但试验成本较高且试验位置具有一定的随机性。本文以三峡库区马家沟滑坡为例,提出一种利用地下水位动态观测资料反演滑坡岩土层渗透系数的方法。具体步骤为:(1)依据滑坡的勘察资料和水位观测数据,构建滑坡数值模型;(2)利用SPSS生成不同渗透系数正交试验组合,并将渗透系数代入数值模型中计算监测井的水位,得到不同渗透系数及其对应的模拟水位数据;(3)应用遗传算法优化的支持向量机构建坡体模拟水位与渗透系数的非线性映射关系,再通过代入实际动态监测水位值求得滑坡岩土层的渗透系数;(4)将求得的渗透系数代入数值模型,用计算的模拟水位与实际观测水位进行对比验证。研究结果表明:遗传算法优化的支持向量机具有良好的学习预测效果,能准确预测渗透系数与水位的关系。该反演方法具有高效、准确的优点,反演结果的精度满足实际应用需要。

全文