摘要

对显微图像中的尿液有形成分包括红白细胞等进行分析,可以帮助医生对有肾脏和泌尿系统疾病的患者进行评估。针对无染色、无标记的尿液图像中红白细胞存在对比度低、边缘模糊等问题,提出一种基于改进BP神经网络的识别方法。首先,将遗传算法引入BP神经网络对网络权值和阈值进行优化,解决训练过程中网络容易陷入局部极值等问题,提高BP神经网络的识别精度;其次,使用动量梯度下降法消除网络在梯度下降中产生的摆动,加快网络的收敛,提高BP神经网络的学习速度。与基础BP神经网络相比,改进方法对红白细胞的识别准确度分别提高了6.9%和9.5%,且识别时间分别缩短了19.3 s和42.1 s;与CNN识别算法相比,改进算法对白细胞的识别准确度提高了1.7%;与SVM识别算法相比,改进算法对红白细胞的识别准确度分别提高了12.9%和12.7%。验证实验和对照实验的结果表明,改进方法能以较高的准确率和较快的速度实现红白细胞的识别。

全文