摘要
针对传统群优化算法在图像匹配中存在调节参数多不易操作等问题,提出了一种基于质量扰动的鹈鹕优化算法(disturbance quality pelican optimization algorithm,DPOA)的图像匹配方法。传统的鹈鹕优化算法(pelican optimization algorithm,POA)在求解多峰函数问题时,其全局收敛性需要进一步改进。首先,引入了一种新的质量扰动方法,通过检测分布点附近的点来收敛到更好的解,提高了在解决多峰函数问题时易陷入局部最优的问题,同时提高了算法的收敛精度。其次,通过数据集CEC2019对算法的有效性进行评价。最后,通过提取图像的方向梯度直方图(histogram of oriented gradient, HOG)将DPOA算法在图像匹配中应用,并通过实验仿真,证明了DPOA算法在图像匹配中的可行性与有效性。
-
单位广西中烟工业有限责任公司; 河南中烟工业有限责任公司; 郑州轻工业大学