摘要

传统的低阶特征模型不能充分利用大数据,从多个维度描述数据和用户。专注于高阶特征提取,结合显式和隐式特征交互的点击率预估模型可以利用好大数据的特点。使用Tensorflow框架搭建包含深度神经网络、因子压缩交互网络和多重特征自交互网络结构的模型,使用淘宝展示广告点击率预估数据集进行训练。模型采用对数损失值和ROC曲线下面积作为评价指标,与原始的LR、FM、Deep&Wide等典型模型进行比较,对数损失值降低了0.04,AUC值提高了0.05左右。

全文