摘要

水下多目标跟踪是水声信号处理领域研究的热点和难点问题。高斯混合概率假设密度(Gaussian mixture probability hypothesis density, GM-PHD)滤波器以其高效的计算效率为解决水下多目标跟踪问题提供了保证。然而,GM-PHD滤波器在跟踪目标时需要先验已知新生目标的强度,否则其性能会出现严重退化。针对该问题,提出一种滑动窗两步初始化高斯混合概率假设密度(sliding window two step initialization GM-PHD, SWTSI-GMPHD)滤波器。将提出的滑动窗两步初始化方法嵌入GM-PHD滤波器,利用滑动窗两步初始化方法估计新生目标强度,减少杂波干扰导致跟踪结果中出现的虚假目标。仿真实验表明,在杂波密集环境下,相较于其他跟踪方法,提出方法将跟踪精度提高69.84%,52.62%和41.05%。

全文