摘要

以传统社会经济指标为主导的贫困识别依赖于详尽的普查抽查数据,收集和处理不同质量和数量的普查抽查数据来研究区域贫困需要耗费大量的人力物力和时间,难以快速动态地监测贫困状态。然而时间分辨率高且客观易获取的夜间灯光数据可以在一定程度上弥补统计数据的劣势,即时地反映地表社会经济现象。机器学习算法能够从这些数据中学习出规律和模式,从中挖掘出潜在信息来识别贫困地区。基于陕西省NPP-VIIRS夜间灯光数据,通过构造多维统计变量,利用逻辑回归、支持向量机、K近邻、随机森林、决策树和梯度提升树6种监督分类算法识别贫困地区。结果表明从夜间灯光数据提取的多维特征能够更好的应用于贫困地区的识别,6种算法都能够准确的识别贫困地区,分类结果在空间上具有相似性,且表现出一定的地域性,分类准确度达到76.82%~83.20%。根据混淆矩阵进一步对比各个算法的特点,认为随机森林算法在误差偏移和分类精度等方面综合表现最佳。

全文