针对聚合通道特征(ACF)在人体检测中对人体轮廓特征描述不够充分的问题,提出基于先验知识的Haar-Like特征来增强检测器对人体轮廓特征的描述能力。设计了一组Haar-Like特征,利用了人体上半身轮廓特点的先验知识,将头部、上半身以及背景视为3个不同的部分。实验结果表明:相比于ACF等算法,所提方法能够提高检测器检测精度,在INRIA数据集上召回率为94. 57%。