摘要

纳什均衡的近似求解是博弈论中基础且重要的话题,其中基于特征向量的方法提供了一个新的视角,因此对博弈矩阵非方阵情形的探讨是值得期待的。本文以两人零和博弈为例,探讨了纳什均衡求解体系与非方支付矩阵的奇异方向的关系。关于纳什均衡计算的两个定理表明:当支付矩阵存在非负奇异值,且其对应的左奇异向量和右奇异向量元素都非负时,则该奇异向量分别对应博弈双方的纳什均衡解。以局中人的策略选择数目分别为3个和2个的情况为算例,验证了该定理的适用性,并对大规模非方矩阵博弈的纳什均衡的近似求解提供了一个新的方向。

全文