摘要
针对深度学习预测模型运算大的问题,在充分挖掘交通大数据的时空相关性的基础上,提出了一种基于K-最邻近(K-nearest neighbor,KNN)与宽度学习系统(broad learning system,BLS)相结合的短时交通流预测模型。利用KNN算法筛选与预测路段时空相关性高的K个路段,将选取路段的交通流数据作为BLS模型的输入分别进行预测,对选取不同路段的预测结果进行加权,以均方根误差(root mean square error,RMSE)为最小时对应K值的结果作为最终的预测值。美国加利福尼亚州交通局PeMs交通数据库实测的交通流量数据的测试结果表明,提出的模型相比于ARIMA、WNN、LSTM、KNN-LSTM模型均方根误差平均降低46.56%,运算效率明显提高,是一种有效的短时交通流预测方法。
- 单位