摘要

为准确预测桥梁结构变形响应,提出了一种利用孤立森林(iForest)算法对桥梁原始变形数据进行降噪,集合经验模态分解法(EEMD)对桥梁变形数据进行分解,长短期记忆神经网络(LSTM)深度学习法对所得到的多尺度变形分量进行预测的EEMD-LSTM组合模型。以武汉沌口长江大桥作为研究对象,选取RMSE、MAE、MAPE和R2等参数作为评价指标,对该模型进行了验证。研究结果表明:与单一的LSTM、SVM和Bayesian模型相比,EEMD-LSTM模型有着良好的鲁棒性、适用性和更高的预测精度。