摘要
泛在电力物联网的提出推动了智慧用电、负荷监测等技术的大力发展,为解决传统非侵入式负荷监测与分解方法耗时长、辨识精度低等问题,提出了一种通过半监督学习聚类数据建立特征集并结合果蝇优化广义回归神经网络模型的负荷分解方法。首先,该方法利用输入的设备有功功率和电流数据采取半监督学习优化相似矩阵,以近邻传播聚类算法为基础挖掘出用电设备的运行状态特性及功率信息,再使用数字编码方式将设备运行状态表示为分类标签;然后,输入总有功功率、无功功率以及电流的时间序列数据和对应序列的分类标签矩阵,利用果蝇优化算法的寻优能力求得广义回归神经网络模型的最优Spread值完成模型优化和训练;随后,输入测试时间序列数据,得到分类矩阵即各设备运行状态,并利用设备运行状态对应的功率信息进行总有功功率重构拟合,完成负荷分解。经仿真对比,该方法对所有用电设备运行状态辨识准确率达到86%左右,对单个用电设备运行状态辨识准确率达到96%左右,且耗时较短,显著提高了对负荷特性信息的挖掘能力和分解辨识能力。
- 单位