摘要

骨导语音具有天然的抗环境噪声能力,然而,受骨导麦克风佩戴位置和方式的影响,骨导语音在采集过程中常混入骨导麦克风与皮肤或衣服之间的摩擦声,导致现有基于深度学习的骨导语音增强方法鲁棒性不高、适应性不强。为提高骨导语音增强的鲁棒性,提出一种融合数据预滤波和频谱展宽的骨导语音增强方法。该方法首先通过低通滤波对骨导语音数据进行预处理以去除高频噪声,然后对预滤波后的骨导语音进行时频变换,并分别基于U-Net和CRNN两种深度网络进行频谱展宽,最后通过时频逆变换重构出全频带语音。仿真结果表明,与现有深度网络增强方法相比,所提方法可以取得更好的PESQ和STOI客观评价指标,主观听感具有更好的清晰度,且对不同说话人具有更好的适应性。

  • 单位
    中国人民解放军陆军工程大学