摘要

深度循环神经网络适用于处理时间序列数据,然而循环神经网络特征提取能力差,时间依赖关系挖掘不足。针对此问题,提出了3种注意力机制和长短时记忆(LSTM)神经网络结合的模型用于人类活动识别问题,并研究了3种注意力机制在不同数据集上单独及配合使用时对模型精度的影响。对于UCIHAR数据集,3种注意力LSTM模型准确率分别为94. 13%、95. 15%和94. 81%,高于LSTM模型识别准确率93. 2%。此外,针对人类活动识别的传感器时间序列数据的标签特点,提出将时间段分类任务转化为分割任务,设计了2个基于分割任务的注意力门控循环单元(GRU)神经网络模型,Bahdanau注意力GRU模型在Skoda数据集和机会(Oppor)数据集准确率为84. 61%和89. 54%,高于基准UNet模型的70. 40%和88. 51%。

全文