研究了一种发动机部件特性修正方法,提出通过对相似发动机结构的通用稳态模型与试飞数据相匹配来获取专用发动机稳态模型。通过对发动机模型的分析,使用优化算法对各部件特性的流量、压比、效率等参数进行调整,经过修正后的仿真模型在设计点及非设计点的输出与试飞数据的相对误差小于2%,计算精度可满足工程需要。在参数优化方法上比较了粒子群算法(PSO)与进化粒子群算法(EPSO),结果表明,EPSO算法在收敛速度和精度上比PSO算法更为优秀,在处理多变量复杂问题时有较好的寻优能力。