摘要
针对滚动轴承早期故障信号微弱、复杂且提取困难的问题,提出一种基于改进变分模态分解(Variational Mode Decomposition,简称VMD)和快速谱峭度图的滚动轴承检测方法。首先利用粒子群算法对VMD最佳影响参数组合进行搜索,采用多尺度模糊熵(Multiscal Enproty,简称MSE)作为适应度函数,并利用优化参数的VMD对原始信号进行分解,得到多个本征模态分量(Intrinsic Mode Function,简称IMF);其次计算原始信号和各模态分量的快速峭度图;再次找出原始信号和各个IMF谱峭度最大值所处的频带区间;然后通过比较原始信号和IMF谱峭度最大值所处频带区间的从属关系来选择最佳IMF;最后,重组最佳IMF并通过共振解调技术求其包络谱图。实验结果表明基于改进变分模态分解和快速谱峭度图的滚动轴承检测方法能更有效诊断出滚动轴承的早期故障。
- 单位