摘要
当前基于压缩感知的传感器网络数据融合方案中,不论数据字段有何特征,均假设网络具有固定而均匀的压缩阈值,从而导致数据通信量过高,能耗浪费较大。提出一种基于多分辨率和压缩感知的数据融合方案。首先,对传感器网络进行配置,以生成多个层次类型不同的簇结构,用于过渡式数据收集,在该结构上,最低层的叶节点只传输原始数据,其他层的数据收集簇进行压缩采样;然后将其测量值向上发送,当母数据收集簇收到测量值时,利用基于反向DCT和DCT模型的CoSaMP算法恢复原始数据;最后,在SIDnet-SWANS平台上部署了该方案,并在不同的二维随机部署传感器网络规模下进行了测试。实验结果表明,随着分层位置的变化,大部分节点的能耗均显著降低,与NCS方案相比,能耗下降50%77%,与HCS方案相比,能耗下降37%70%。
-
单位浙江大学; 保定学院