摘要
一直以来,情绪是心理学、教育学、信息科学等多个学科的研究热点,脑电信号(EEG)因其客观、不易伪装的特点,在情绪识别领域受到广泛关注。由于人类情绪是大脑多个脑区相互作用产生的,该文提出一种基于同步性脑网络的支持张量机情绪分类算法(SBN-STM),该算法采用相位锁定值(PLV)构建了同步性脑网络,分析多导联脑电信号之间的同步性和相关性,并生成2阶张量序列作为训练集,运用支持张量机(STM)模型实现正负情绪的二分类。该文基于DEAP脑电情绪数据库,详细分析了同步性脑网络张量序列的选取方法,最佳张量序列窗口的大小和位置,解决了传统情绪分类算法特征冗余的问题,提高了模型训练速度。仿真实验表明,基于支持张量机的同步性脑网络分类方法的情绪准确率优于支持向量机、C4.5决策树、人工神经网络、K近邻等以向量为特征的情绪分类模型。
- 单位