摘要
[目的]针对广佛手在田间真实环境下病虫害识别较为困难的问题,提出一种基于改进SSD(single shot MultiBox detector)算法——SSD-Res50-3C的广佛手病虫害检测方法。[方法]SSD-Res50-3C算法主干网络部分用ResNet50网络替换原有的VGG16网络,增加模型在田间真实环境下对广佛手病虫害特征的提取能力;在预测特征层之前加入一种轻量高效的特征融合模块提升SSD算法的多尺度特征融合能力,进一步提高SSD算法在田间真实环境下的抗干扰能力。[结果]SSD-Res50-3C算法平均精度均值达到92.86%,相较原始的SSD算法提升6.61%,FPS(frames per second)达到64.1。相比YOLO v3、YOLO v4、YOLO v5x6、Faster R-CNN和EfficientDet-D3模型,SSD-Res50-3C算法的平均精度均值分别高6.41%、2.01%、0.79%、0.58%和5.10%,FPS分别高16.20、40.280、24.40、36.20和54.84。[结论]基于改进SSD算法的广佛手病虫害检测方法能够弱化田间真实环境的干扰信息,能准确识别田间真实环境下广佛手病虫害目标,可为田间真实环境下广佛手病虫害检测提供一种新思路。
-
单位华南农业大学; 电子工程学院