摘要

针对平方根容积卡尔曼滤波高斯混合概率假设密度(SRCKF-GM-PHD)算法在高杂波条件下对非线性目标跟踪能力弱的问题,文中首先融入改进灰狼算法,实时调节过程噪声Q和量测噪声R。其次,结合改进的渐消因子思想,实时调整SRCKF-GM-PHD算法中的增益矩阵,提高目标的跟踪精度。此外,为避免算法中止,文中提出动态权重调整策略的改进措施,调整算法中的实际输出残差序列的协方差。最终,形成了融合改进灰狼算法和改进渐消因子的SRCKF-GM-PHD算法。仿真分析对比了四种算法的性能,表明了所提算法在跟踪精度方面的有效性和优越性。

全文