摘要

随着新型电力系统中电能质量扰动(PQDs)愈加复杂,为提升PQDs分类准确率并增强算法的噪声鲁棒性,将卷积降噪自编码器(CDAE)、时域卷积网络(TCN)与双向长短期记忆(BLSTM)相结合,提出一种基于CDAE和TCN/BLSTM模型的电能质量扰动分类方法。首先,通过CDAE以原始信号为目标重构含噪信号;然后,利用TCN和BLSTM并行挖掘扰动的抽象和时序特征;最后,特征合并层融合两种特征并完成分类。仿真结果表明,该方法可有效分类强噪声下的20类PQDs信号且平均准确率达99.23%,相比于其他主流的分类方法,所提方法具有更好的分类效果和抗噪性能。