摘要

金属板材拉深过程中的压边力是决定成品质量的关键参数,传统压边力控制方法往往需要对高度非线性的拉深过程进行建模,导致其控制结果与实际存在较大偏差。提出一种基于深度强化学习与有限元仿真集成的金属板材拉深过程控制模型,利用深度神经网络强大的预测能力来提取拉深加工过程中的状态信息并进行可靠预测,结合强化学习的决策能力来进行压边力控制策略的学习优化,避免了精确系统动力学模型的拟合以及先验知识的获取。同时,针对板材拉深加工中常见的拉裂质量缺陷与起皱质量缺陷,建立拉深成形性能评价函数,为深度强化学习提供回报信号来指导学习过程,并利用有限元仿真构成深度强化学习的环境模型。试验表明,深度强化学习模型能够有效地进行压边力控制策略优化,有效提高产品质量。所提出的压边力控制模型利用无模型的深度强化学习,能避免拉深过程的系统模型拟合,可提高压边力控制策略的控制效果,同时结合循环神经网络能解决板材拉深加工过程中的部分可观察性问题。