摘要

通过分析影响太阳辐射的主要因素,提出以太阳高度角、季节和天气(晴空指数)作为数据划分依据的分组模型建立方法。以拉萨和西安地区的逐时气象数据和辐射数据为例,基于遗传算法(genetic algorithm,GA)优化的BP神经网络,建立太阳高度角、季节和天气类型的逐时总辐射分组模型。该研究揭示分组模型误差变化的规律,并将其估算误差与AllData模型比较。结果显示,相较于AllData模型,分组模型的估算误差均有降低。其中,天气分组模型误差最小,且西安的天气分组模型结果优于拉萨。西安天气分组模型平均绝对百分比误差(MAPE)和相对均方根误差(rRMSE)相较AllData模型结果分别下降3.96%和4.18%。研究结果表明分组模型能够降低逐时总辐射估算误差,可为估算逐时总辐射提供方法借鉴。

全文