摘要

数控加工程序通常由计算机辅助制造系统生成,以微小直线段的形式“以直代曲”来指导数控机床进行直线插补运动。随着工艺复杂度和精度要求的提高,数控加工程序的数据量急剧增加,不仅增加了数据存储和传输的难度,而且会引起机床执行过程中速度的频繁调整。针对以上问题,提出了一种融合深度学习的改进Douglas-Peucker三维数控加工轨迹压缩方法,该方法通过引入曲率和距离容差度的超参数考虑了加工轨迹中数据点序列的几何特性,并通过深度神经网络模型动态地优化算法中的超参数,从而实现更高的压缩效率。此外,算法中利用了KD树结构优化误差计算,确保压缩后的数据能够在给定的公差范围内精确呈现原始数据的特性。实验表明,该算法可大幅减少数据量,并确保压缩后的数据准确呈现原始数据的特性。