基于二次EEMD的工业电能需量多步预测

作者:何峰; 钟婷; 谭貌*
来源:计算技术与自动化, 2021, 40(03): 72-77.
DOI:10.16339/j.cnki.jsjsyzdh.202103013

摘要

电力大用户最大需量控制是降低电网峰值负荷、节约用户电费成本的重要技术手段。面向强波动性和冲击性工业电能需量控制,研究了超短期需量负荷的多步预测问题。基于集成经验模态分解(EEMD)方法,通过二次分解有效分离时间序列中不同频率的信号,采用长短期记忆网络(LSTM)对各信号子序列进行独立预测,最后组合预测结果。实验结果表明,本方法能很好的预测工业需量负荷变化,MAPE/MAE/NRMSE精度指标基本控制在2%以内,明显优于多种现行主流时序预测模型和最新文献方法,且消除了多步预测的传递误差,预测模型精度和稳定性满足需量控制要求。

  • 单位
    湘潭大学

全文