摘要

由于煤炭生产的特殊性与危险性,煤炭生产过程中安全事故常有发生,其中人为因素占极高的比例,因此研究矿井工作人员的违规行为十分必要.针对人体行为识别中传统的动态时间规整算法经常出现的奇异点和时间复杂度问题,提出一种分段线性逼近结合自适应权重动态时间规整算法.对该算法进行了仿真以及实验,该算法在SDU Fall Dataset数据集的平均识别率达到了95.33%,平均识别时间减少了46.47%,在煤矿井下使用该系统进行测试,结果表明所提出的算法在识别速度和准确率上均有一定程度的提高.