摘要
准确可靠的风速预测有利于维护电力系统的安全运行。为提高预测精度,本文提出一种融合残差与变分模态分解(VMD)、极限学习机(ELM)、长短时记忆(LSTM)的短期风速预测模型。首先,VMD算法将风速序列分解为若干个子序列以降低原始数据复杂度。接着将ELM作为初始预测引擎,用来提取各风速子序列特征。然后,对所有预测子序列进行重构,得到初步预测结果。为进一步挖掘原始风速序列中的不平稳特征,采用LSTM对初步预测结果的残差进行建模。最后,集成预测的残差与初步结果,得到最终的预测值。在真实风电场数据上开展实验,并将预测结果与其他模型对比。实验结果表明,所提模型能显著提升风速序列的预测性能。
- 单位