摘要
在社交媒体高速发展方便信息交流的同时,虚假新闻也在网络上大量传播,对社会稳定造成了很大的影响.针对当前虚假新闻检测工作大多充分考虑虚假新闻中新闻文本内容而忽略图像内容的问题,提出了一种基于注意力的BiLSTM-CNN多模态虚假新闻检测模型.该模型首先使用双向长短期记忆神经记忆网络(BiLSTM)提取文本内容特征,使用卷积神经网络(CNN)提取图像语义特征,利用注意力机制(Attention)层对提取的内容特征信息分配相应的权重,再将两种特征融合以形成重新参数化的多模态特征作为输入进行虚假新闻检测.实验表明,该方法达到了98.3%的正确率.
- 单位