摘要
针对低信噪比环境下传统匹配滤波算法在LoRa信号解调中误码率较高的问题,提出了一种基于深度学习的LoRa信号识别方法。设计的监督学习神经网络由输入层、卷积层、全连接层、分类层和输出层组成,利用不同信噪比的加性高斯白噪声信道模型生成的LoRa接收信号对神经网络模型进行训练,再将训练好的神经网络应用于LoRa解调的信号识别。仿真实验表明,在系统扩频因子为7且误码率为10-4时,卷积神经网络的信噪比相比传统的匹配滤波解调方法提升了5~6 dB,相应的自由空间传输距离提升了80%~90%。
-
单位数字化纺织服装技术教育部工程研究中心