摘要

本发明公开了一种用于人脸识别中数据拟合估计的困难样本发掘方法,包括步骤:1)准备一个批次的人脸图像样本及其对应的标签,将其输入特征提取模型提取人脸特征;2)将提取到的人脸特征输入类中心权重层,其输出经过归一化处理,得到相似度矩阵;3)构建样本权重调制器,并通过该调制器对相似度矩阵进行重新赋予权重;4)将重新赋予权重的相似度矩阵输入损失层,计算该批次人脸图像样本的损失值;5)根据损失值对特征提取模型的参数进行更新,并进行模型性能验证,若达标,则终止训练;若不达标,则重复步骤1)至步骤5)。本发明在训练前期抑制困难样本,在训练后期强调困难样本,从而达到加速模型收敛和提升训练后期模型学习效率的目的。