摘要
火电厂测量烟气含氧量主要是用氧化锆传感器和磁式氧气传感器,由于测量环境灰尘大,具有腐蚀性介质如硫化物等,容易发生测量环室堵塞和热敏元件腐蚀,所以其稳定性差,测量误差大,容易发生故障。针对这一情况提出了一种基于遗传算法和神经网络的测量模型。根据电厂已有的测点和机理分析初步选取模型辅助变量,在建模前对数据进行预处理,分别采用拉依达法则去除粗大误差、五点三次平滑滤波去除噪音。采用偏最小二乘进行主元分析,最后运用遗传算法对神经网络的权值阈值进行寻优,构建了基于遗传算法对初始权值和阈值优化的反馈神经网络模型。研究结果表明,基于遗传算法优化权值和阈值的神经网络预测烟气含氧量精度较高,且收敛速度快。
- 单位