摘要

针对实时语义分割模型大量缩减参数造成特征空间信息损失,以及特征缺少上下文信息导致分割类别预测不准确的问题,提出一种基于空间信息引导的双分支实时语义分割算法。该算法采用双分支结构分别获取特征的空间信息和语义信息,为更好地保留空间信息,设计了一种空间引导模块,同时捕获特征的局部信息和周围上下文信息,并通过通道加权给予重要信息更高的权重,有效弥补了图像高分辨率特征在降采样过程中的信息损失;为进一步强化特征的上下文信息表征能力,设计了池化特征增强模块,采用不同尺寸的池化核捕获多尺度特征信息,并采用条状池化核对特征之间的长距离依赖关系进行建模,更好地确定了分割区域的类别。在Cityscapes和CamVid数据集上对所提算法进行了验证,平均交并比分别达到77.4%和74.0%,FPS分别达到49.1和124.5,在保证实时分割的情况下有效提升了精度,获得了良好的语义分割性能。