摘要

针对滚动轴承故障损伤程度难以确定的问题,提出对滚动轴承不同故障位置、不同损伤程度的振动信号进行故障特征提取及智能分类的故障诊断方法。先对各状态振动信号进行MF-DFA分析,选取敏感性及稳定性最好的二种多重分形谱参数作为故障特征量,然后输入到经过PSO参数优化的LSSVM中进行故障诊断。通过仿真试验、应用实例验证了该方法的有效性,并与LSSVM、SVM方法的诊断结果进行比较。结果表明:所提方法可实现滚动轴承故障位置及损伤程度的智能诊断,比直接LSSVM、SVM方法具有更优的泛化性,适合解决实际工程问题。

全文