摘要
郊狼优化算法在迭代运行时种群多样性降低,收敛速度变慢,易陷入局部最优,并且在求解约束优化问题时难以获得可行解。提出一种动态调整成长方式的郊狼优化算法(DGCOA)。在狼群进化中引入变异交叉策略,增强种群多样性,基于郊狼成长策略加入全局最优个体指导搜索,使得每个子种群中的个体从不同的方向快速逼近最优解位置,并根据种群中个体相似度对郊狼位置更新方式进行调整,平衡算法的全局探索与局部开发能力。在求解约束优化问题时,利用自适应约束处理方法构建新的适应度函数,协调优化目标和约束违反度。基于CEC2006对22个测试函数和3个工程设计问题进行仿真,结果表明,与COA、ICTLBO、ODPSO等算法相比,DGCOA算法具有较高的收敛精度和稳定性,适用于求解复杂优化问题。
- 单位