摘要
本发明公开了一种基于深度学习的多目标检测识别方法,点云映射网络对已有的3D点云数据集进行二维图像特征映射,加入偏移量特征,获得以三维点云投影并离散成分辨率固定的二维网格;其次,通过条状池化对所述二维网格进行卷积处理,获得一维向量的特征图;再次,卷积网络中引入注意力机制对一维向量的特征图进行强化处理;最后,针对所述一维向量的特征图中每个网格单元设计预测边界框,并且确定目标的空间位置、大小、类别概率和方向信息。本发明首次在点云映射方法中加入偏移量特征,在卷积网络中引入注意力机制,让模型可以更加关注信息量最大的通道特征,而抑制那些不重要的通道特征。
- 单位