摘要

为构建基于深度学习的微管蛋白秋水仙碱位点抑制剂(CBSIs)预测模型,进行CBSIs的活性预测和药物虚拟筛选,我们收集了1 482个结构多样性的靶向微管蛋白秋水仙碱位点的抑制剂和非抑制剂,以分子指纹和分子图为特征表述,采用图卷积神经网络深度学习方法,建立分类预测模型。对所建立模型的预测结果进行比较,发现了一个最优预测模型(Model-Chemprop),它在测试集上的敏感度(SE)值为0.910 9、特异性(SP)值为0.812 5、总体准确度(Q)值为87.92%、AUC值为0.891。因此,基于深度学习建立的最优模型可以作为虚拟筛选工具,用于新型CBSIs的活性预测和发现,以及靶向富集库的构建。

全文