摘要
鉴于S变换的窗口函数对不同频带信号的自适应能力差,提出一种新型的改进S变换(Modified S-Transform,MST),该方法通过引入四个辅助参数,优化高斯窗函数尺度因子的自适应能力,使改进S变换的能量集中度最大化,获得了更出色的时频分辨能力。建立了基于扰动信号幅值和相位的特征值评价体系,采用随机森林(Random Forest,RF)算法对包括标准信号和电压暂降、电压暂升、高次谐波、暂态振荡等10种扰动信号共11类电能质量信号分类识别。与已有文献采用的决策树、支持向量机和神经网络分类结果进行了对比分析,仿真试验结果表明,该方法分类准确率高,抗干扰能力强,且在训练样本少、低信噪比(Signal-to-Noise Radio,SNR)条件下分类结果优势明显。
- 单位