摘要

为了提高异常检测的准确性和高效性,提出了基于xgboost的异常检测算法。首先对异常检测当前遇到的挑战进行分析,指出缺少样本和模型泛化是异常检测中的难点。在此基础上设计了异常注入算法,利用3sigma原则对数据集进行扩充;然后设计特征提取器,针对正常数据和异常数据的特点设计相关特征;最后选择xgboost模型对时序数据进行异常检测。此异常检测流程提高了异常检测的准确性和泛化能力。通过在KPI公共数据集上进行实验,验证了该设计的准确性和有效性。

全文