摘要
提出了一种基于4线激光雷达(LADAR)与摄像头融合的方案,用于提高智能车辆对车辆目标的检测精度。首先调用卷积神经网络来识别图像中的目标,然后将点云与图像数据进行空间匹配,最后采用R-Tree算法快速配准检测框与相应的点云数据。利用点云的深度信息就能获得目标的准确位置。经过真实道路场景采集的图像与点云数据进行测试,结果表明:该融合算法将漏检概率(FN)从Mask R-CNN方法的14.86%降低到8.03%;因而,该融合算法能够有效的降低图像漏检的概率。
-
单位重庆理工大学; 中国汽车技术研究中心