摘要
目的:解决现有包装食品自动识别方法存在的识别精度差、效率低等问题。方法:基于软包装食品自动识别系统,提出一种改进的YOLOv3模型用于软包装食品的自动识别。将Kmeans++算法引入模型中解决小目标不敏感问题,将Mish激活函数引入模型中提高识别的准确性,将注意力机制Senet引入模型中提高特征提取能力。通过试验分析了该识别模型的性能,验证了模型的优越性。结果:与常规识别方法相比,所提方法能更准确、高效地实现软包装食品的自动识别,识别准确率为95.40%,识别效率为23.80帧/s,满足包装食品识别的需要。结论:通过对现有食品识别模型的优化,可以有效提高识别模型的性能。
-
单位江苏联合职业技术学院; 江苏理工学院; 南京大学